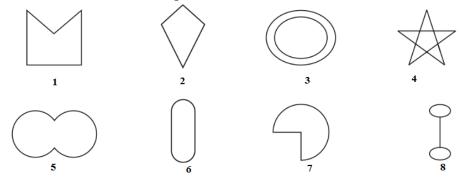
Exercise 3.1

1. Given here are some figures

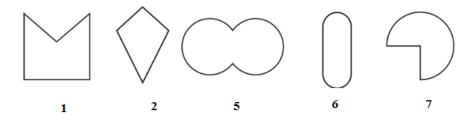


Classify each of them on the basis of the following.

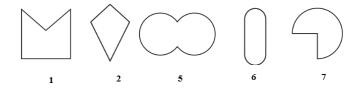
- (a) Simple curve
- (b) Simple closed curve
- (c) Polygon
- (d) Convex polygon
- (e) Concave polygon

Answer:

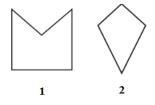
(a) Simple curve - A simple curve is a curve that does not cross itself and can be both open and closed.



(b) Simple closed curve - In simple closed curves the shapes are closed by line segments or by a curved line.



(c) Polygon - A simple closed curve made up of only line segments is called a polygon.



(d) Convex polygon - A convex polygon is a closed figure where all its interior angles are less than 180° and the vertices are pointing outwards.

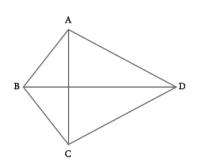
(e) Concave polygon - A concave polygon is defined as a polygon with one or more interior angles greater than 180°

2. How many diagonals does each of the following have?

- (a) A convex quadrilateral
- (b) A regular hexagon
- (c) A triangle

Answer: A diagonal is a line segment connecting two non-consecutive vertices of a polygon.

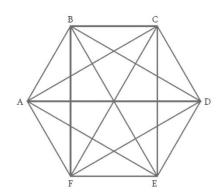
Draw the given polygon and mark the vertices and then, draw lines joining the two non-consecutive vertices. From this, we can calculate the number of diagonals.



(a) Convex quadrilateral - A convex quadrilateral has two diagonals

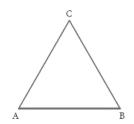
Here, AC and BD are two diagonals.

(b) A regular hexagon



(a) Regular Hexagon

Here, the diagonals are AD, AE, BD, BE, FC, FB, AC, EC, and FD. Totally there are 9 diagonals.

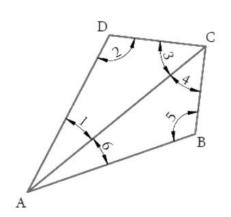


(c) A triangle

A triangle has no diagonal because there no two non-consecutive vertices.

3. What is the sum of the measures of the angles of a convex quadrilateral? Will this property hold if the quadrilateral is not convex? (Make a non-convex quadrilateral and try!)

Answer: Let ABCD be a convex quadrilateral. We draw a diagonal AC which divides the quadrilateral into two triangles.



ABCD is a convex quadrilateral made of two triangles Δ ABC and Δ ADC.

We know that the sum of the angles of a triangle is 180 degrees. So:

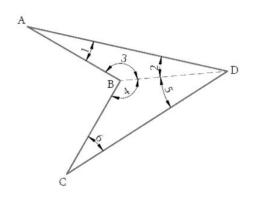
$$\angle 6 + \angle 5 + \angle 4 = 180^{\circ}$$
 [sum of the angles of $\triangle ABC = 180^{\circ}$]

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$
 [sum of the angles of $\triangle ADC = 180^{\circ}$]

Adding we get,

$$\angle 6 + \angle 5 + \angle 4 + \angle 1 + \angle 2 + \angle 3 = 180^{\circ} + 180^{\circ} = 360^{\circ}$$

Hence, the sum of measures of the angles of a convex quadrilateral is 360°. Yes, even if a quadrilateral is not convex then, this property applies.



Let ABCD be a non-convex or a concave quadrilateral. Join BD, which also divides the quadrilateral into two triangles.

Using the angle sum property of a triangle, on triangles ΔABD and ΔBCD

=
$$180^{\circ} + 180^{\circ}$$
 [sum of angles of triangles $\triangle ABD$ and $\triangle BCD$]

Therefore, the sum of all the interior angles of this quadrilateral will also be 360°.

CBSE

4. Examine the table. (Each figure is divided into triangles and the sum of the angles deduced from that)

Figure				
Side	3	4	5	6
Angle	1×180°	2×180°	3×180°	4×180°
Sum	$=(3-2)\times180^{\circ}$	$=(4-2)\times180^{\circ}$	$=(5^{\circ}-2)\times180^{\circ}$	$=(6-2)\times180^{\circ}$

What can you say about the angle sum of a convex polygon with number of sides? (a) 7 (b) 8 (c) 10 (d) n

Answer: From the table, it can be observed that the angle sum of a convex polygon of n sides is $(n - 2) \times 180$

(a) When n = 7

Then angle sum of a polygon = $(n - 2) \times 180^{\circ} = (7 - 2) \times 180^{\circ} = 5 \times 180^{\circ} = 900^{\circ}$

(b) When n = 8

Then angle sum of a polygon = $(n - 2) \times 180^{\circ} = (8 - 2) \times 180^{\circ} = 6 \times 180^{\circ} = 1080^{\circ}$

(c) When n = 10

Then angle sum of a polygon = $(n - 2) \times 180^{\circ} = (10 - 2) \times 180^{\circ} = 8 \times 180^{\circ} = 1440^{\circ}$

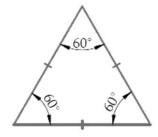
(d) When n = n

Then angle sum of a polygon = $(n - 2) \times 180^{\circ}$

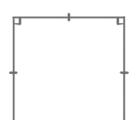
5. What is a regular polygon?

State the name of a regular polygon of (i) 3 sides (ii) 4 sides (iii) 6 sides

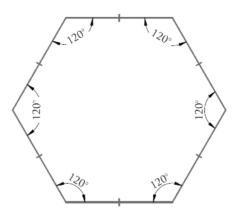
Answer: Regular polygon - A polygon having all sides of equal length and the interior angles of equal measure is known as a regular polygon i.e. a regular polygon is both 'equiangular' and 'equilateral'.



(a) 3 sides = polygons having three sides is called a triangle. A regular 3-sided polygon is an equilateral triangle.

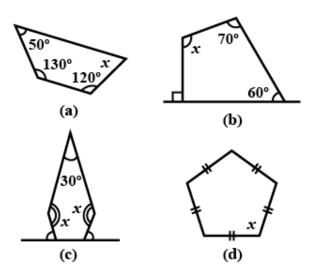


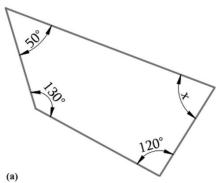
(b) 4 sides = polygons having four sides is called a quadrilateral. A regular 4 sided polygon is a square.



(c) 6 sides = a regular polygon having six sides is called a Hexagon.

6. Find the angle measure x in the following figures:





Answer: (a) The given figure has 4 sides and hence it is a quadrilateral

Using the angle sum property of a quadrilateral,

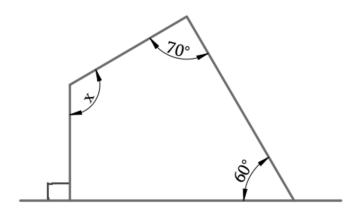
$$50^{\circ} + 130^{\circ} + 120^{\circ} + x = 360^{\circ}$$

$$300^{\circ} + x = 360^{\circ}$$

$$x = 360^{\circ} - 300^{\circ}$$

 $x = 60^{\circ}$

(b) Using the angle sum property of a quadrilateral.



The line is perpendicular to the base line hence, the angle formed is 90°.

$$90^{\circ} + 60^{\circ} + 70^{\circ} + x = 360^{\circ}$$

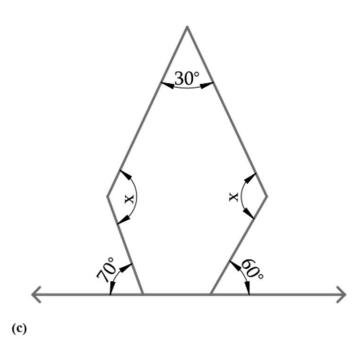
$$220^{\circ} + x = 360^{\circ}$$

$$220^{\circ} + x = 360^{\circ}$$

$$x = 360^{\circ} - 220^{\circ}$$

$$x = 140^{\circ}$$

(c) The given figure is a pentagon (number of sides =5)



Angle sum of a polygon = $(n - 2) \times 180^{\circ}$

$$= (5 - 2) \times 180^{\circ}$$

$$= 3 \times 180^{\circ}$$

Sum of the interior angle of pentagon is 540°.

Angles at the bottom are linear pairs.

Thus, First base interior angle,

Also, Second base interior angle,

Angle sum property of a polygon = $(n - 2) \times 180^{\circ}$

$$\rightarrow$$
 30° + x + 110° + 120° + x = 540°

$$\rightarrow$$
 2x + 260° = 540°

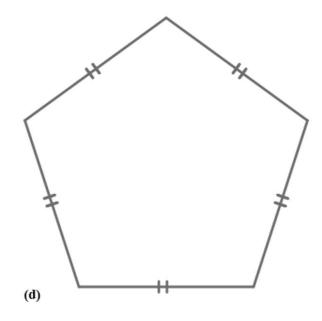
$$\Rightarrow$$
 2x = 540° - 260°

$$\rightarrow$$
 2x = 280°

$$\rightarrow$$
 x = 280°/2

Therefore, $x = 140^{\circ}$

(d) The given figure is pentagon (number of sides =5)



Sum of the interior angle of pentagon is 540°

Angle sum of a polygon

$$= (n - 2) \times 180^{\circ}$$

$$= (5 - 2) \times 180^{\circ}$$

$$= 3 \times 180^{\circ}$$

Let each angle of the polygon be x since it is a regular pentagon.

Angle sum of a polygon = $x + x + x + x + x = 540^{\circ}$

$$5x = 540^{\circ}$$

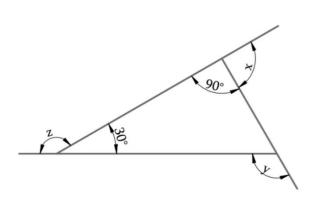
$$x = 540^{\circ}/5$$

$$x = 108^{\circ}$$

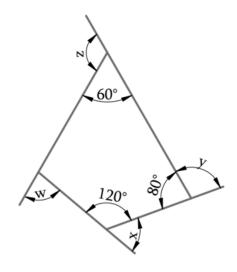
The given pentagon is a regular polygon i.e. it is both 'equilateral' and 'equiangular'. Thus, the measure of each interior angle of the pentagon is equal.

Hence each interior angle is 108°

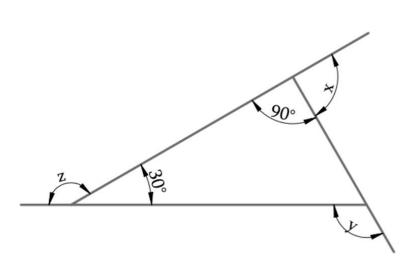
7. a) Find x + y + z



b) Find x + y + z + w



Answer: The unknown angles can be estimated by using the angle sum property of a quadrilateral and triangle accordingly.



(a)

Sum of linear pair of angles is = 180°

CBSE

$$x + 90^{\circ} = 180^{\circ}$$
 (Linear pair)

$$x = 180^{\circ} - 90^{\circ}$$

$$x = 90^{\circ}$$

Solving for z

$$z + 30^{\circ} = 180^{\circ}$$
 (Linear pair)

$$z = 180^{\circ} - 30^{\circ}$$

 $z = 150^{\circ}$

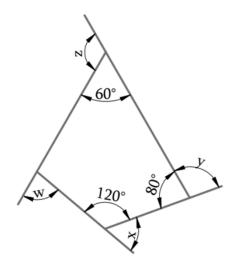
Solving for y

y = 90° + 30° (Exterior angle theorem)

$$y = 120^{\circ}$$

$$x + y + z = 90^{\circ} + 120^{\circ} + 150^{\circ}$$

(b)



The sum of the measures of all the interior angles of a quadrilateral is 360°. Using the angle sum property of a quadrilateral,

Let n be the fourth interior angle of the quadrilateral.

$$60^{\circ} + 80^{\circ} + 120^{\circ} + n = 360^{\circ}$$

$$260^{\circ} + n = 360^{\circ}$$

$$n = 360^{\circ} - 260^{\circ}$$

$$n = 100^{\circ}$$

Sum of linear pair of angles is 180°

$$x + 120^{\circ} = 180^{\circ} - - 2$$

$$y + 80^{\circ} = 180^{\circ} - - 3$$

$$z + 60^{\circ} = 180^{\circ} - - - 4$$

Adding equation (1), (2), (3) and (4),

$$w + 100^{\circ} + x + 120^{\circ} + y + 80^{\circ} + z + 60^{\circ} = 180^{\circ} + 180^{\circ} + 180^{\circ} + 180^{\circ}$$

$$w + x + y + z + 360^{\circ} = 720^{\circ}$$

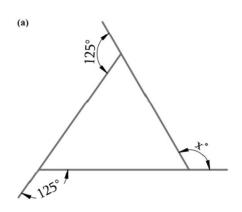
$$w + x + y + z = 720^{\circ} - 360^{\circ}$$

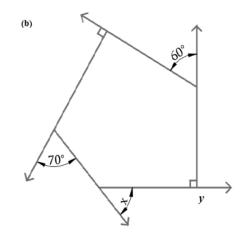
$$w + x + y + z = 360^{\circ}$$

Thus, the sum of the measures of the external angles of any polygon is 360°.

Exercise 3.2

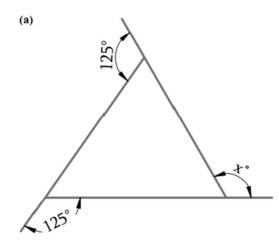
1. Find x in the following figures





Answer: We know that the sum of the measures of the exterior angles of any polygon is 360°. So we will equate all the angle sum to 360° and find out the unknown angle.

(a)

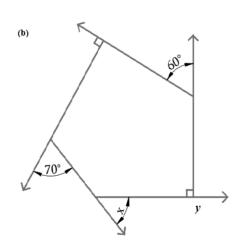


Sum of the measures of the external angles,

$$125^{\circ} + 125^{\circ} + x^{\circ} = 360^{\circ}$$

$$250^{\circ} + x^{\circ} = 360^{\circ}$$

$$x^{\circ} = 110^{\circ}$$



(b)
$$y = 180^{\circ} - 90^{\circ}$$
 [linear pair angles]

$$y = 90^{\circ}$$

Sum of the measures of the external angles is 360°,

$$60^{\circ} + 90^{\circ} + 70^{\circ} + x + y = 360^{\circ}$$

$$60^{\circ} + 90^{\circ} + 70^{\circ} + x + 90^{\circ} = 360^{\circ}$$

$$310^{\circ} + x = 360^{\circ}$$

$$x = 50^{\circ}$$

2. Find the measure of each exterior angle of a regular polygon of

(i) 9 sides (ii) 15 sides

Answer: Irrespective of the number of sides of a regular polygon, the measure of each exterior angle is equal and the sum of the measure of all the exterior angles of the regular polygon is equal to 360°.

(i) 9 sides

The total sum of all exterior angles = 360°

Each exterior angle = Sum of exterior angles / Number of sides

$$=\frac{360^0}{9}$$

$$=40^{\circ}$$

Each exterior angle = 40°

(ii) 15 sides

The total sum of all exterior angles = 360°

Each exterior angle = Sum of exterior angles / Number of sides

$$=\frac{360^{\circ}}{15} = 24^{\circ}$$

Each exterior angle = 24°

3. How many sides does a regular polygon have if the measure of an exterior angle is 24°?

Answer: Total sum of all the exterior angles of the regular polygon = 360°

Let number of sides be = n.

Measure of each exterior angle = 24°

Number of sides = Sum of exterior angles / each exterior angle

$$=\frac{360^0}{24}$$
 = 15

Thus, the regular polygon has 15 sides.

4. How many sides does a regular polygon have if each of its interior angles is 165°?

Answer: Total sum of all the exterior angles of a regular polygon = 360°

Let number of sides be = n.

Measure of each interior angle = 165°

Measure of each exterior angle = 180° - 165° = 15° [Since, an interior and an exterior angle forms a linear pair]

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each exterior angle}}$$

$$=\frac{360^0}{15} = 24$$

Hence, the regular polygon has 24 sides

5. (a) Is it possible to have a regular polygon with measure of each exterior angle as 22°?

(b) Can it be an interior angle of a regular polygon? Why?

Answer: We know that, total sum of all the exterior angles of a regular polygon = 360°

Let the number of sides be = n.

(a) Measure of each exterior angle = 22°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each exterior angle}}$$

$$=\frac{360^0}{22^0}$$

Thus, we cannot have a regular polygon with an exterior angle of 22° as the number of sides is not a whole number.

(b) Measure of each interior angle = 22°

Measure of each exterior angle = (180 - 22)° = 158°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each exterior angle}}$$

$$=\frac{360^0}{1582^0} = 2.27$$

Thus, we cannot have a regular polygon with an interior angle of 22° as the number of sides is not a whole number

- 6. (a) What is the minimum interior angle possible for a regular polygon? Why?
- (b) What is the maximum exterior angle possible for a regular polygon?

Answer:

(a) Consider a regular polygon having the least number of sides (i.e., an equilateral triangle)

We know that the sum of all the angles of a triangle = 180°

$$x + x + x = 180^{\circ}$$

$$3x = 180^{\circ}$$

$$x = \frac{360^0}{3}$$

$$x = 60^{\circ}$$

Thus, the minimum interior angle possible for a regular polygon = 60°

(b) We know that the exterior angle and an interior angle will always form a linear pair. Thus, the exterior angle will be maximum when the interior angle is minimum.

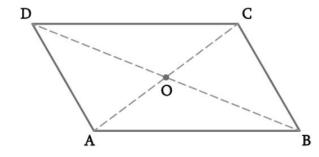
Consider the interior angle to be 60° since an equilateral triangle is a regular polygon having maximum exterior angle because it consists of the least number of sides

Exterior angle =
$$180^{\circ}$$
 - 60° = 120°

Therefore, the maximum exterior angle possible for a regular polygon is 120°.

Exercise 3.3

1. Given a parallelogram ABCD. Complete each statement along with the definition or property



used

(i)
$$AD =$$

(iv) m
$$\angle$$
DAB + m \angle CDA =

CBSE

Answer:

(i) The opposite sides of a parallelogram are of equal length.

Thus, AD = BC

(ii) In a parallelogram, opposite angles are equal in measure

Thus, $\angle DCB = \angle DAB$

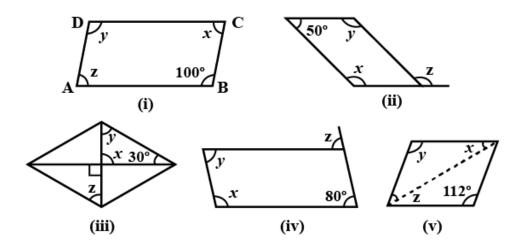
(iii) In a parallelogram, diagonals bisect each

Hence, OC = OA

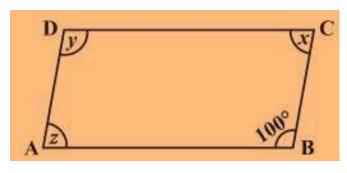
(iv) In a parallelogram, adjacent angles are supplementary to each other.

Hence, $m\angle DAB + m\angle CDA = 180^{\circ}$

2. Consider the following parallelograms. Find the values of the unknowns x, y, z.



Answer:



(i) Since ∠D is opposite to ∠B, so, y = 100° (Opposite angles of a parallelogram are equal)

 \angle C + \angle B = 180° (The adjacent angles in a parallelogram are supplementary)

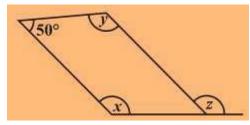
x + 100° = 180° (The adjacent angles in a parallelogram are supplementary)

Therefore,

$$x = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

 $x = z = 80^{\circ}$ (Since opposite angles of a parallelogram are equal)

Thus,
$$x = 80^{\circ}$$
, $y = 100^{\circ}$, $z = 80^{\circ}$



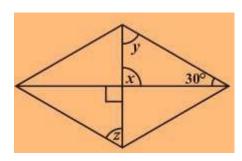
(ii) $x + 50^\circ = 180^\circ$ (The adjacent angles in a parallelogram are supplementary)

$$x = 180^{\circ} - 50^{\circ}$$

 $x = y = 130^{\circ}$ (Since opposite angles of a parallelogram are equal)

 $x = z = 130^{\circ}$ (Corresponding angles)

Thus, $x = y = z = 130^{\circ}$



(iii) $x + y + 30^{\circ} = 180^{\circ}$ (Angle sum property of a triangle)

x = 90° (Vertically opposite angle)

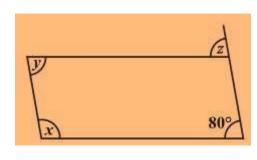
$$90^{\circ} + y + 30^{\circ} = 180^{\circ}$$

$$y + 120^{\circ} = 180^{\circ}$$

$$y = 60^{\circ}$$

z = y = 60° (Alternate interior angles are equal)

$$x = 90^{\circ}, y = z = 60^{\circ}$$



(iv) z = 80°(Corresponding angles)

 $y = 80^{\circ}$ (Since opposite angles of a parallelogram are equal)

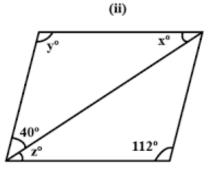
 $x + y = 180^{\circ}$ (Adjacent angles of a parallelogram are supplementary)

$$x + 80^{\circ} = 180^{\circ}$$

$$x = 180^{\circ} - 80^{\circ}$$

$$x = 100^{\circ}$$

Thus,
$$x = 100^{\circ}$$
, $y = 80^{\circ}$, $z = 80^{\circ}$



(v) y = 112° (Since opposite angles of a parallelogram are equal)

 $x + y + 40^{\circ} = 180^{\circ}$ (Angle sum property of a triangle)

$$x + 112^{\circ} + 40^{\circ} = 180^{\circ}$$

$$x + 152^{\circ} = 180^{\circ}$$

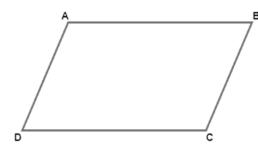
$$x = 180^{\circ} - 152^{\circ}$$

$$x = 28^{\circ}$$

z = x = 28°(Alternate interior angles)

Thus,
$$x = 28^{\circ}$$
, $y = 112^{\circ}$, $z = 28^{\circ}$

3. Can a quadrilateral ABCD be a parallelogram if



(i)
$$\angle D + \angle B = 180^{\circ}$$
?

(ii)
$$AB = DC = 8 \text{ cm}$$
, $AD = 4 \text{ cm}$ and $BC = 4.4 \text{ cm}$?

(iii)
$$\angle A = 70^{\circ}$$
 and $\angle C = 65^{\circ}$?

Answer:

(i) Using the angle sum property of a quadrilateral,

$$\angle A + \angle B + \angle D + \angle C = 360^{\circ}$$

$$\angle A + \angle C + 180^{\circ} = 360^{\circ}$$
 (Since its given that $\angle D + \angle B = 180^{\circ}$)

$$\angle A + \angle C = 360^{\circ} - 180^{\circ}$$

 $\angle A + \angle C = 180^{\circ}$ (Opposite angles should also be of same measures.)

For $\angle D + \angle B = 180^{\circ}$, is a parallelogram.

If the following conditions are fulfilled, then ABCD is a parallelogram. The sum of the measures of the adjacent angles should be 180° and opposite angles should also be of the same measure.

Hence, using the given condition $\angle D + \angle B = 180^{\circ}$ we can say that yes, it may or may not be a parallelogram.

(ii) Property of parallelogram: The opposite sides of a parallelogram are of equal length.

Here, AD = 4cm and BC = 4.4 cm

Opposite sides AD and BC are of different lengths. So, ABCD is not a parallelogram

(iii) Property of a parallelogram: In a parallelogram opposite angles are equal.

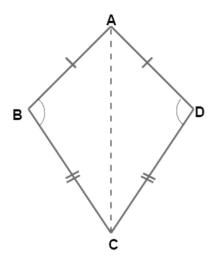
So,
$$\angle A = 70^{\circ}$$
 and $\angle C = 65^{\circ}$

Opposite angles are not equal. So, ABCD is not parallelogram.

4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Answer:

ABCD is quadrilateral whose opposite angles are equal as shown below.



ABCD is a kite where $\angle B = \angle D$

In a kite, the angle between unequal sides is equal.

Let's prove the same.

Draw a line from A to C and we will get two triangles with common base AC.

In ΔABC and ΔADC we have,

AB = AD,

BC = CD

AC is common to both

 $\triangle ABC \cong \triangle ADC$ (Using SSS congruence)

Hence corresponding parts of congruent triangles are equal.

Therefore $\angle B = \angle D$ (By CPCT)

However, the quadrilateral ABCD is not a parallelogram as the measures of the remaining pair of opposite angles, $\angle A$ and $\angle C$ are not equal since they form angles between equal sides.

5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

Answer: Given that the adjacent angles of a parallelogram are in the ratio 3:2.

Thus, the angles are 3x and 2x respectively.

We know that the sum of the measures of adjacent angles is 180° for a parallelogram.

$$\angle A + \angle B = 180^{\circ}$$

$$3x + 2x = 180^{\circ}$$

$$5x = 180^{\circ}$$

$$x = \frac{180^0}{5}$$

$$x = 36^{\circ}$$

Thus, one of the angles = 3x

$$3(36^{\circ}) = 108^{\circ}$$

The other angle is 2x

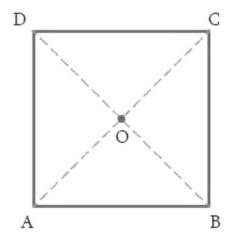
$$2(36^{\circ}) = 72^{\circ}$$

The other two angles are 72° and 108° since opposite angles of a parallelogram are equal.

Thus, the measures of the angles of the parallelogram are 108°, 72°, 108°, and 72°

6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram

Answer: Let ABCD be a parallelogram as shown below.



In parallelogram ABCD,

- $\angle A$ and $\angle D$ are supplementary since DC is parallel to AB and with transversal DA. (Adjacent angles of a parallelogram are supplementary)
- $\angle A$ and $\angle B$ are supplementary since AD is parallel to BC and with transversal BA. (Adjacent angles of a parallelogram are supplementary)

Sum of adjacent angles = 180°

Let each adjacent angle be x

Since the adjacent angles in a parallelogram are supplementary,

$$x + x = 180^{\circ}$$

$$2x = 180^{\circ}$$

$$x = \frac{180^0}{2} = 90^\circ$$

Hence, each adjacent angle is 90 degrees

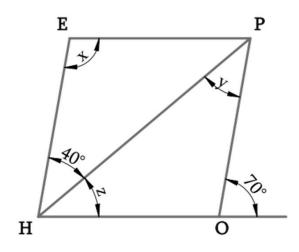
$$\angle A = \angle B = 90^{\circ}$$

$$\angle C = \angle A = 90^{\circ}$$

$$\angle D = \angle B = 90^{\circ}$$

Thus, each angle of the parallelogram measures 90°.

7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y, and z. State the properties you use to find them



Answer:

According to the given figure,

 \angle HOP + 70° = 180° since they form a linear pair

∠HOP = 180° - 70°

∠HOP = 110°

 $\angle O = \angle E$ since opposite angles in a paraleelogram are equal

Thus, $x = 110^{\circ}$

 \angle EHP = \angle HPO since they are alternate interior angles

Thus, $y = 40^{\circ}$

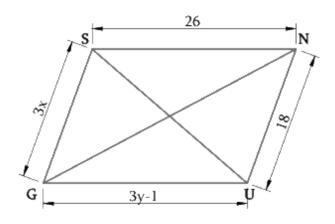
 $z + 40^{\circ} = 70^{\circ}$ since they form corresponding angles

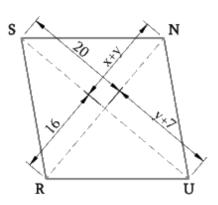
 $z = 70^{\circ} - 40^{\circ}$

 $z = 30^{\circ}$

Thus, $x = 110^{\circ}$, $y = 40^{\circ}$, $z = 30^{\circ}$

8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm)





Answer:

(i) GUNS

In a parallelogram, the opposite sides have equal lengths

In GUNS, SG = NU

$$3x = 18$$

$$x = \frac{18}{3}$$
.

$$x = 6$$

$$3y = 26 + 1$$

$$y = \frac{27}{3}$$
.

$$y = 9$$

Hence, the measures of x and y are 6 cm and 9 cm respectively in GUNS.

(ii) RUNS

The diagonals of a parallelogram bisect each other.

Thus, in parallelogram RUNS,

Considering diagonal SU, y + 7 = 20

$$y = 20 - 7$$

$$y = 13$$

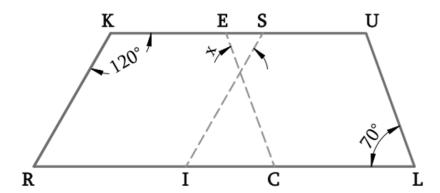
Considering diagonal RN, x + y = 16

$$x + 13 = 16$$

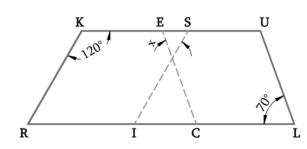
$$x = 3$$

Hence, the measures of x and y are 3 cm and 13 cm respectively in RUNS.

9. In the above figure both RISK and CLUE are parallelograms. Find the value of x



Answer:



In parallelogram RISK

$$\angle$$
RKS + \angle ISK = 180° (Adjacent angles are supplementary)

 $\angle I = \angle K$ (Opposite angels of parallelogram are equal)

= 120°

In parallelogram CLUE,

 $\angle L = \angle E$ (Opposite angels of parallelogram are equal)

= 70°

The sum of the measures of all the interior angles of a triangle is 180°.

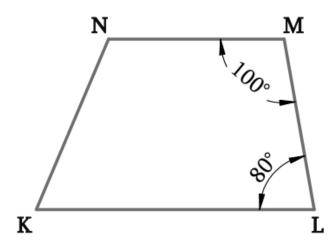
$$x + 60^{\circ} + 70^{\circ} = 180^{\circ}$$

$$x + 130^{\circ} = 180^{\circ}$$

$$x = 180^{\circ} - 130^{\circ}$$

$$x = 50^{\circ}$$

10. Explain how this figure is a trapezium. Which of its two sides are parallel? (Fig 3.32)



Answer: In the given figure KLMN

Since two pairs of adjacent angles that form pairs of consecutive interior angles are supplementary,

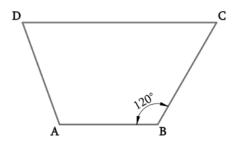
i.e.,
$$\angle L + \angle M = 180^{\circ}$$

Thus,
$$80^{\circ} + 100^{\circ} = 180^{\circ}$$

Therefore, NM is parallel to KL

Hence, KLMN is a trapezium with a pair of parallel sides KL and NM.

11. Find m \angle C in Fig 3.33 if $\overline{AB} \mid \mid \overline{DC}$



Answer:

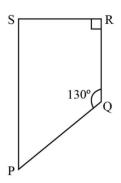
Figure ABCD is a Trapezium, in which AB is parallel to DC.

Here,

 $\angle B + \angle C = 180^{\circ}$ (pair of adjacent angles are supplementary)

Therefore, $m \angle C = 60^{\circ}$

12. Find the measure of $\angle P$ and $\angle S$ if $SP \mid \mid RQ$ in Fig 3.34. (If you find $m \angle R$, is there more than one method to find $m \angle P$?)



Answer: Given, SP is parallel to RQ and SR is the traversal drawn to these lines. Hence, SPQR is a trapezium.

$$\angle$$
S + \angle R = 180°

$$\angle$$
S + 90° = 180° [Since, \angle R = 90° in the given figure]

$$\angle S = 180^{\circ} - 90^{\circ}$$

$$\angle S = 90^{\circ}$$

Using the angle sum property of a quadrilateral,

$$\angle$$
S + \angle P + \angle Q + \angle R = 360°

$$90^{\circ} + \angle P + 130^{\circ} + 90^{\circ} = 360^{\circ}$$

$$\angle P = 360^{\circ} - 310^{\circ}$$

$$\angle P = 50^{\circ}$$

Alternate Method:

$$\angle P + \angle Q = 180^{\circ}$$
 (adjacent angles with SP | | RQ)

$$\angle P + 130^{\circ} = 180^{\circ}$$

Also,

$$\angle$$
S + \angle R = 180° (adjacent angles)

$$\angle S + 90^{\circ} = 180^{\circ}$$

Exercise 3.4

- 1. State whether True or False.
- (a) All rectangles are squares
- (b) All rhombuses are parallelograms
- (c) All squares are rhombuses and also rectangles
- (d) All squares are not parallelograms
- (e) All kites are rhombuses
- (f) All rhombuses are kites
- (g) All parallelograms are trapeziums
- (h) All squares are trapeziums

Answer:

	Shapes	True / False	Reason
Α	All rectangles are squares.	False	A rectangle need not have all sides equal
			hence it is not square.
В	All rhombuses are	True	Since the opposite sides of a rhombus are
	parallelograms		equal and parallel to each other, it is also
			a parallelogram
С	All squares are rhombuses and	True	All squares are rhombuses as all sides of a
	are also rectangles.		square are of equal lengths. All squares
			are also rectangles as each internal angle
			is 90 degrees.
D	All squares are	False	The opposite sides of a parallelogram are
	not parallelograms.		of equal length hence squares with all
			sides equal are parallelograms.
Е	All kites are Rhombuses.	False	A rhombus has all sides of equal length
			whereas a kite does not have all sides of
			equal length.
F	All rhombuses are kites.	True	Since all rhombuses have equal sides and
			diagonals bisect each other.
G	All parallelograms are	True	Since all trapeziums have a pair of parallel
	trapeziums.		sides which is true for parallelograms as
			well.
Н	All squares are Trapeziums.	True	All trapeziums have a pair of parallel sides,
			hence all squares can be trapezium.

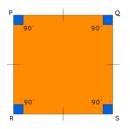
2. Identify all the quadrilaterals that have:

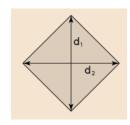
(a) four sides of equal length (b) four right angles

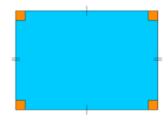
Answer:

- (a) Four sides of equal length Rhombus and Square are the quadrilaterals with four sides of equal length.
- (b) Four right angles Square and Rectangle are the quadrilaterals with four right angles.

Below are the diagrams shown for a square, rhombus, and a rectangle.







- 3. Explain how a square is (i) a quadrilateral
- (ii) a parallelogram (iii) a rhombus (iv) a rectangle

Answer:

(i)	Quadrilateral	A square is a quadrilateral since it has four sides.
(ii)	Parallelogram properties- (i) Opposite sides are equal. (ii) Opposite angles are equal. (iii) Diagonals bisect one another.	A square is a parallelogram since it contains both pairs of opposite sides which are equal, opposite angles are equal and its diagonals bisect each other.
(iii)	Rhombus properties- i) A rhombus is a parallelogram with all sides of equal length. ii) The diagonals of a rhombus are perpendicular bisectors of one another.	A square is a rhombus since i) All four sides are of the same length. ii) The diagonals of a square are perpendicular bisectors of each other.
(iv)	Rectangle properties- Being a parallelogram, the rectangle has opposite sides of equal length and its diagonals bisect each other and opposite angles are 90 degrees each.	A square is a rectangle since each interior angle measures 90 degrees, opposite sides are of equal length and its diagonals bisect each other.

- 4. Name the quadrilaterals whose diagonals
- (i) bisect each other (ii) are perpendicular bisectors of each other
- (iii) are equal

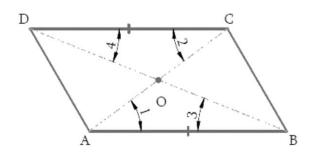
Answer:

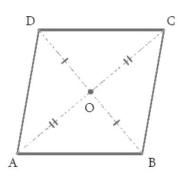
(i) Bisect each other: The diagonals of a parallelogram, rhombus, rectangle and square bisect each other.

(Diagram below)

Parallelogram:

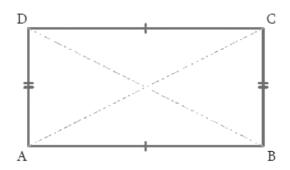
Rhombus:

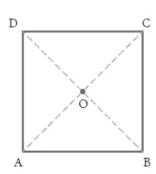




Rectangle:

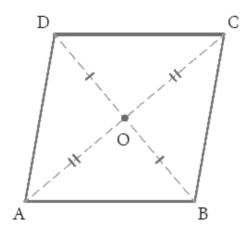
Square

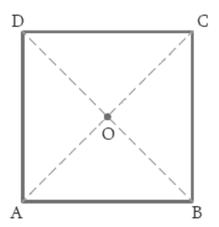




(ii) are perpendicular bisectors of each other: The diagonals of a square and rhombus are perpendicular bisectors of each other.

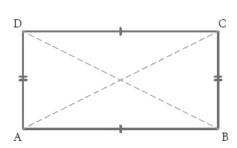
Rhombus and Square

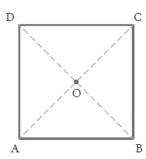




(iii) are equal: The diagonals of a rectangle and square are equal.

Rectangle and Square

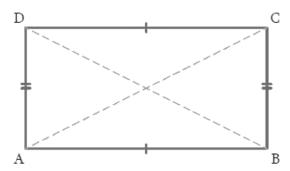




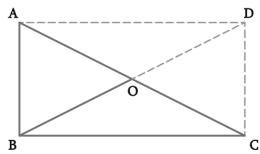
5. Explain why a rectangle is a convex quadrilateral.

Answer: Polygons that are convex have no portions of their diagonals in their exteriors. Also, all the interior angles of a convex quadrilateral are lesser than 180 degrees.

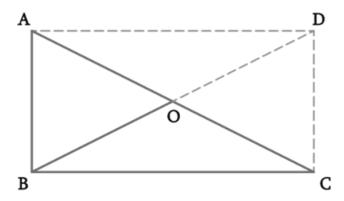
A rectangle is a convex quadrilateral since its vertex are raised and both of its diagonals lie in its interior. Also, each interior angle of a rectangle measures 90 degrees. Hence, none of the angles is a reflex angle. So, a rectangle is considered a convex quadrilateral.



6. ABC is a right-angled triangle and O is the mid point of the side opposite to the right angle. Explain why O is equidistant from A, B and C. (The dotted lines are drawn additionally to help you).



Answer: ABCD is a rectangle as opposite sides are equal and parallel to each other and all the interior angles measure 90°.



Therefore, O is equidistant from A, B, C, and D.

Thus, AD || BC, AB || DC and AD = BC, AB = DC

In a rectangle, diagonals are of equal length and they bisect each other.

Hence, AO = OC = BO = OD

Thus, two right triangles make a rectangle where O is an equidistant point from A, B, C, and D because O is the mid-point of the two diagonals of the rectangle ABCD.