CBSE

Exercise 1.1

Using appropriate properties find:

(i)
$$-2/3 \times 3/5 + 5/2 - 3/5 \times 1/6$$

(ii)
$$2/5 \times (-3/7) - 1/6 \times 3/2 + 1/14 \times 2/5$$

Answer:

Rational numbers numbers are in the form of p/q, where p and q can be any integer and q \neq 0

By using commutative property of multiplication and addition we proceed with the questions.

(i)
$$-2/3 \times 3/5 + 5/2 - 3/5 \times 1/6$$

Answer:
$$\frac{3}{5} \times \left(-\frac{2}{3}\right) + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$
 [By commutativity of multiplication]

$$= \frac{3}{5} \times \left(-\frac{2}{3}\right) - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$
 [By commutativity of addition]

Rearranging to take 3/5 common

$$=\frac{3}{5} \times \left(-\frac{2}{3} - \frac{1}{6}\right) + \frac{5}{2}$$

$$=\frac{3}{5} \times \left(-\frac{5}{6}\right) + \frac{5}{2}$$

$$=-\frac{1}{2}+\frac{5}{2}$$

= 2

(ii)
$$2/5 \times (-3/7) - 1/6 \times 3/2 + 1/14 \times 2/5$$

Answer: Taking 2 / 5 as common

$$= \frac{2}{5} \times \left[\left(-\frac{3}{7} \right) + \frac{1}{14} \right] - \frac{1}{6} \times \frac{3}{2}$$
 [By distributive property of multiplication]

$$=\frac{2}{5} \times \left(\frac{-3 \times 2 + 1}{14}\right) - \frac{1}{6} \times \frac{3}{2}$$

$$=\frac{2}{5} \times \left(\frac{-5}{14}\right) - \frac{1}{6} \times \frac{3}{2}$$

$$=-\frac{1}{7}-\frac{1}{4}$$

$$=\frac{-(4+7)}{28}=\frac{-11}{28}$$

2. Write the additive inverse of each of the following:

Answer:

(i) Additive Inverse of
$$\frac{2}{8}$$
 is $-\frac{2}{8} = \frac{-2}{8}$

We see that,
$$\frac{2}{8} + \left(\frac{-2}{8}\right) = 0$$

(ii) Additive Inverse of
$$\frac{-5}{9}$$
 is $-\left(\frac{-5}{9}\right) = \frac{5}{9}$

We see that,
$$\frac{-5}{9} + \frac{5}{9} = 0$$

(iii) Additive Inverse of
$$\frac{-6}{-5}$$
 is $-\left(\frac{-6}{-5}\right) = \left(-\frac{6}{5}\right) = \frac{-6}{5}$

We see that,
$$\frac{-6}{-5} + \left(\frac{-6}{5}\right) = \frac{6}{5} - \frac{6}{5} = 0$$

(iv) Additive Inverse of
$$\frac{2}{-9}$$
 iS $-\left(\frac{2}{-9}\right) = -\left(\frac{-2}{9}\right) = \frac{2}{9}$

We see that,
$$\frac{2}{-9} + \frac{2}{9} = \frac{-2}{9} + \frac{2}{9} = 0$$

(v) Additive Inverse of
$$\frac{19}{-6} = -\left(\frac{19}{-6}\right) = -\left(\frac{-19}{6}\right) = \frac{19}{6}$$

We see that,
$$\frac{19}{-6} + \frac{19}{6} = \frac{-19}{6} + \frac{19}{6} = 0$$

3. Verify that: -(-x) = x for:

(i)
$$x = 11/15$$

(ii)
$$x = -13/17$$

Answer:

Rational numbers are in the form of p/q, where p and q can be any integer and $q \neq 0$.

The negative of a negative rational number is the same rational number.

(i)
$$x = \frac{11}{15}$$

$$-(-x) = -\left(\frac{-11}{15}\right) = \frac{11}{15} = x$$

Hence proved.

(ii)
$$x = -13/17$$

$$-(-x) = -\left[-\left(\frac{-13}{17}\right)\right] = \frac{13}{17} = x$$

Hence proved.

4. Find the multiplicative inverse of the following

Answer: The reciprocal of a given rational number is known as its multiplicative inverse. The product of a rational number and its multiplicative inverse is 1.

(i) The Multiplicative inverse of -13 is
$$\frac{-1}{13}$$

$$\because -13 \times \left(\frac{-1}{13}\right) = 1$$

(ii) The Multiplicative inverse of
$$\frac{-13}{19}$$
 is $\frac{-19}{13}$

$$\because \frac{-13}{19} \times \left(\frac{-19}{13}\right) = 1$$

(iii) The Multiplicative inverse of
$$\frac{1}{5}$$
 is 5

$$\because \frac{1}{5} \times 5 = 1$$

(iv) The Multiplicative inverse of
$$\frac{-5}{8} \times \frac{-3}{7}$$
 is $\frac{56}{15}$

$$\therefore \frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56} \text{ and } \frac{15}{56} \times \frac{56}{15} = 1$$

(v) The Multiplicative inverse of -1 x
$$\frac{-2}{5}$$
 is $\frac{5}{2}$

$$\therefore -1 \times \frac{-2}{5} = \frac{2}{5}$$
 and $\frac{2}{5} \times \frac{5}{2} = 1$

(vi) The Multiplicative inverse of -1 is -1

$$\because -1 \times (-1) = 1$$

5. Name the property under multiplication used in each of the following:

(i)
$$-4/5 \times 1 = 1 \times -4/5 = -4/5$$

(ii)
$$-13/17 \times -2/7 = -2/7 \times -13/17$$

(iii)
$$-19/29 \times 29/-19 = 1$$

Answer:

(i)
$$\frac{-4}{5}$$
 x 1 = 1 x $\frac{-4}{5}$ = $\frac{-4}{5}$

 \therefore 1 is the multiplicative identity in the above expression.

Thus, the property of Multiplicative Identity is used here.

(ii)
$$\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

In general, $a \times b = b \times a$ for any two rational numbers.

Thus, the property of Commutativity of Multiplication is used here.

(iii)
$$\frac{-19}{29}$$
 x $\frac{29}{-19}$ = 1

For a rational number $\frac{a}{b}$, the multiplicative inverse is the reciprocal of that number which is $\frac{b}{a}$.

Thus, the property of Multiplicative Inverse is used here.

6. Multiply 6/13 by the reciprocal of -7/16

Answer: A rational number is a number that is of the form p/q where p and q are integers and q is not equal to 0.

The reciprocal of
$$\frac{-7}{16}$$
 is $\frac{-16}{7}$

We will use the multiplication operation of rational numbers to solve the given question.

So, we calculate the product of the expression as follows:

$$\Rightarrow \frac{6}{13} \times \left(\frac{-16}{7}\right) = \left[\frac{6 \times (-16)}{13 \times 7}\right] = \frac{-96}{91}$$

Thus, the product of $\frac{6}{13}$ and its reciprocal of $\frac{-7}{16}$ is $\frac{-96}{91}$

7. Tell what property allows you to compute $1/3 \times (6 \times 4/5)$ as $(1/3 \times 6) \times 4/3$

Answer: A rational number is a number that is of the form p/q where p and q are integers and q is not equal to 0.

According to the associative property of multiplication,

$$(a \times b) \times c = a \times (b \times c)$$

Thus, by using the associativity of multiplication we see that,

$$\rightarrow \frac{1}{3} \times \left(6 \times \frac{4}{5} \right) = \left(\frac{1}{3} \times 6 \right) \times \frac{4}{5}$$

8. Is 8/9 the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Answer: The reciprocal of a given rational number is known as its multiplicative inverse. The product of a rational number and its multiplicative inverse is 1.

We know that,
$$-1\frac{1}{8} = \frac{-9}{8}$$

Now,
$$\frac{8}{9} \times \left(\frac{-9}{8} \right) = -1 \neq 1$$

So,
$$\frac{8}{9}$$
 is not the multiplicative inverse of $-1\frac{1}{8}$ since the product of $\frac{8}{9}$ X $\left(\frac{-9}{8}\right)$ is not equal to 1.

Thus, by using the multiplicative identity property, we conclude that $\frac{8}{9}$ is not the multiplicative inverse of $-1\frac{1}{8}$.

9. Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

Answer: The reciprocal of a given rational number is known as its multiplicative inverse. The product of a rational number and its multiplicative inverse is 1.

0.3 can be written as
$$\frac{3}{10}$$

We know that, $3\frac{1}{3}$ can be written as $\frac{10}{3}$

$$\Rightarrow \frac{3}{10} \times \frac{10}{3} = 1$$

Yes, 0.3 is the multiplicative inverse of
$$3\frac{1}{3}$$
 since $\frac{3}{10}$ x $\frac{10}{3}$ = 1

Thus, by using the multiplicative identity property, we conclude that 0.3 is the multiplicative inverse of $3\frac{1}{3}$.

10. Write:

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Answer:

- (i) 0 (zero) is the rational number that does not have a reciprocal as it is undefined (∞).
- (ii) The rational numbers 1 and -1 are equal to their respective reciprocals.

Reciprocal of 1 is 1/1 = 1, Reciprocal of -1 is $\frac{1}{-1} = -1$

(iii) Rational number 0 is equal to its negative.

0 is neither a positive nor a negative number. Hence 0 is the same as -0.

11. Fill in the blanks

- (i) Zero has _____ reciprocal.
- (ii) The numbers and are their own reciprocals
- (iii) The reciprocal of -5 is _____.
- (iv) Reciprocal of 1/x, where $x \neq 0$ is _____.
- (v) The product of two rational numbers is always a _____.
- (vi) The reciprocal of a positive rational number is ______.

Answer:

- (i) Zero has no reciprocal
- (ii) The numbers **1** and **-1** are their own reciprocals.
- (iii) The reciprocal of -5 is $\frac{-1}{5}$
- (iv) Reciprocal of 1/x, where $x \neq 0$ is \mathbf{x}
- (v) The product of two rational numbers is always a rational number
- (vi) The reciprocal of a positive rational number is **positive**

Exercise 1.2

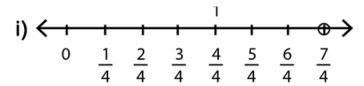
1. Represent these numbers on the number line. (i) 7/4 (ii) -5/6

Answer: The positive numbers are on the right of 0 and negative numbers are represented on the left of 0 on a number line.

Chapter 1: Rational numbers VIII CBSE

The denominator of the rational number indicates the number of equal parts into which one unit of a number line has to be divided into whereas the numerator indicates how many of these parts are to be taken into consideration.

(i)
$$\frac{7}{4}$$


Since $\frac{7}{4}$ is an improper fraction, we will convert this to a mixed fraction.

$$\frac{7}{4} = 1\frac{3}{4}$$

The first unit has to be divided into 4 parts and we have to make 7 markers of distance towards the right of 0.

These markings will begin with $\frac{1}{4}$ up to $\frac{7}{4}$

 $\Rightarrow \frac{4}{4} = 1$ on the number line, thus, to plot $1\frac{3}{4}$ we will move three positions towards the right from $\frac{4}{4}$ which is $\frac{7}{4}$

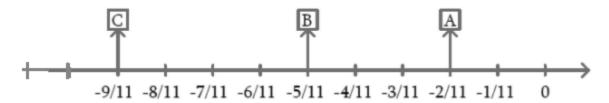
(i)
$$\frac{-5}{6}$$

The first unit has to be divided into 6 parts and we have to make 5 markers of distance towards the left of 0 since it is negative.

These markings will begin with $\frac{-1}{6}$ up to $\frac{-5}{6}$

Hence, we will move by five positions towards the left from 0 which is $\frac{-5}{6}$

3. Represent -2/11, -5/11, -9/11 on the number line


Answer: The positive numbers are on the right of 0 and negative numbers are represented on the left of 0 on a number line.

Chapter 1: Rational numbers VIII CBSE

The denominator of the rational number indicates the number of equal parts into which one unit of a number line has to be divided into whereas the numerator indicates how many of these parts are to be taken into consideration.

We draw 11 markers to the left of 0 on the number line since the numbers given $\frac{-2}{11}$, $\frac{-5}{11}$, $\frac{-9}{11}$ are negative.

The 2nd marker represents $-\frac{-2}{11}$ (A)

The 5th marker represents $\frac{-5}{11}$ (B)

The 9th marker represents $\frac{-9}{11}$ (C)

4. Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$

Answer: We can find infinitely many rational numbers between any two given rational numbers by taking the mean of the two rational numbers.

Alternative method: We can make the denominators same for the two given rational numbers.

The given numbers are $\frac{-2}{5}$ and $\frac{1}{2}$

The LCM of both denominators is 10.

So we will multiply the denominators by such a number which gives us a multiple of 10.

Multiplying both the numerator and denominator of $\frac{-2}{5}$ by 4, we get

$$\Rightarrow \frac{-2 \times 4}{5 \times 4} = \frac{-8}{20}$$

Multiplying both the numerator and denominator of $\frac{1}{2}$ by 10, we get

Thus, we will now find ten rational numbers between $\frac{-8}{20}$ and $\frac{10}{20}$

The numbers will be
$$\frac{-7}{20}$$
, $\frac{-6}{20}$, $\frac{-5}{20}$, $\frac{-4}{20}$, $\frac{-3}{20}$, $\frac{-2}{20}$, $\frac{-1}{20}$, 0 , $\frac{1}{20}$, $\frac{2}{20}$

5. Find five rational numbers between

- (i) 2/3 and 4/5
- (ii) -3/2 and 5/3
- (iii) 1/4 and 1/2

Answer:

We can find infinitely many rational numbers between any two given rational numbers by taking the mean of the two rational numbers.

Alternative method: We can make the denominator same for the two given rational numbers.

(i) 2/3 and 4/5

The LCM of both denominators is 15.

We shall multiply the numbers to get the denominator as a multiple of 15

Multiplying both the numerator and denominator of $\frac{2}{3}$ by 20, we get

$$\Rightarrow \frac{2 \times 20}{3 \times 20} = \frac{40}{60}$$

Multiplying both the numerator and denominator of $\frac{4}{5}$ by 12, we get

$$\Rightarrow \frac{4 \times 12}{5 \times 12} = \frac{48}{60}$$

The five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ can be taken as:

$$\Rightarrow \frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$$

(ii) -3/2 and 5/3

The LCM of both denominators is 6.

So we shall multiply the numbers to get the denominator as a multiple of 6

Multiplying both the numerator and denominator of $\frac{-3}{2}$ by 3, we get

$$\Rightarrow \frac{-3 \times 3}{2 \times 3} = \frac{-9}{6}$$

Multiplying both the numerator and denominator of $\frac{5}{3}$ by 2, we get

$$\Rightarrow \frac{5 \times 2}{3 \times 2} = \frac{10}{6}$$

The five rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}$ can be taken as:

$$\Rightarrow \frac{-9}{6}, \frac{-8}{6}, \frac{-7}{6}, 1, \frac{3}{6}, \frac{5}{6}$$

(iii) 1/4 and 1/2

The LCM of both numbers is 8.

So we shall multiply the numbers to get the denominator as a multiple of 8

Multiplying both the numerator and denominator of $\frac{1}{4}$ by 8, we get

$$\Rightarrow \frac{1 \times 8}{4 \times 8} = \frac{8}{32}$$

Multiplying both the numerator and denominator of $\frac{1}{2}$ by 16, we get

$$\Rightarrow \frac{1 \times 16}{2 \times 16} = \frac{16}{32}$$

The five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ can be taken as

$$\Rightarrow \frac{9}{32}$$
, $\frac{10}{32}$, $\frac{11}{32}$, $\frac{12}{32}$, $\frac{13}{32}$

6. Write five rational numbers greater than -2

Answer: A rational number is a number that is of the form p/q where p and q are integers and q is not equal to 0.

We know that -2 is a rational number as it can in the form of p/q which is $\frac{-2}{1}$

We can write infinitely many rational numbers greater than -2.

Five rational numbers greater than -2 are -1, 0, $\frac{1}{4}$, $\frac{1}{5}$ and $\frac{1}{6}$

7. Find ten rational numbers between 3/5 and 3/4

Answer:

We can find infinitely many rational numbers between any two given rational numbers by taking the mean of the two rational numbers.

Alternative method: We can make the denominator same for the two given rational numbers.

There are infinite numbers between any two rational numbers

Given numbers are
$$\frac{3}{5}$$
 and $\frac{3}{4}$

The LCM of both denominators is 20.

So we shall multiply the numbers to get the denominator as a multiple of 20

Multiplying both the numerator and denominator of $\frac{3}{5}$ by 40, we get

$$\Rightarrow \frac{3 \times 40}{5 \times 40} = \frac{120}{200}$$

Multiplying both the numerator and denominator of $\frac{3}{4}$ by 50, we get

$$\Rightarrow \frac{3 \times 50}{4 \times 50} = \frac{150}{200}$$

The ten rational numbers between $\frac{120}{200}$ and $\frac{150}{200}$ or $\frac{3}{5}$ and $\frac{3}{4}$ can be taken as:

$$\Rightarrow \frac{121}{200'}, \frac{122}{200'}, \frac{123}{200'}, \frac{124}{200'}, \frac{125}{200'}, \frac{126}{200'}, \frac{127}{200'}, \frac{128}{200'}, \frac{129}{200'}, \frac{130}{200}$$