

Section A

Objective Questions:

Q1. Which of the following fractions is the greatest:

(a) $\frac{5}{6}$ (b) $\frac{5}{7}$ (c) $\frac{5}{8}$ (d) $\frac{5}{9}$

Answer: (b) $\frac{5}{6}$

When comparing fractions with the same numerator, the fraction with the smallest denominator is the greatest.

Alternate solution:

In order to find the greatest fraction among the above given fractions we will convert all the fractions to an equivalent fraction with a denominator equal to the LCM of their denominators.

2	6,7,8,9
2	3,7,4,9
2	3,7,2,9
3	3,7,1,9
3	1,7,1,3
7	1,7,1,1
	1,1,1,1

$$\text{LCM} = 2 \times 2 \times 2 \times 3 \times 3 \times 7 = 504$$

The equivalent fractions are:

$$(a) \frac{5 \times 84}{6 \times 84} = \frac{420}{504}$$

$$(b) \frac{5 \times 72}{7 \times 72} = \frac{360}{504}$$

$$(c) \frac{5 \times 63}{8 \times 63} = \frac{315}{504}$$

$$(d) \frac{5 \times 56}{9 \times 56} = \frac{280}{504}$$

(e) Clearly, $\frac{5 \times 84}{6 \times 84} = \frac{420}{504}$

Q2. Which of the following is a false statement?

(a) $\frac{1}{7} < \frac{3}{14}$ (b) $\frac{5}{8} = \frac{15}{24}$ (c) $\frac{3}{4} = \frac{6}{16}$ (d) $\frac{5}{12} > \frac{2}{6}$

Answer: (c) $\frac{3}{4} = \frac{6}{16}$

(a) $\frac{1}{7} < \frac{3}{14} = \text{True}$; $\frac{2}{14} = \frac{1}{7}$; $\frac{2}{14} < \frac{3}{14}$

(b) $\frac{5}{8} = \frac{15}{24} = \text{True}$; $\frac{15 \div 3}{24 \div 3} = \frac{5}{8}$

(c) $\frac{3}{4} = \frac{6}{16} = \text{False}$; $\frac{12 \div 4}{16 \div 4} = \frac{3}{4}$

(d) $\frac{5}{12} > \frac{2}{6} = \text{True}$; $\frac{5}{12} > \frac{4}{12}$

Q3. Anshul eats $\frac{4}{7}$ of a pizza. The fraction of the left is

(a) $\frac{3}{7}$ (b) $\frac{3}{7}$ (c) $\frac{3}{7}$ (d) $\frac{1}{7}$

Answer:

Step 1: Represent the whole pizza as a fraction = $\frac{7}{7} = 1$

Step 2: Subtract the fraction eaten = $\frac{7}{7} - \frac{4}{7} = \frac{3}{7}$

Q4. The fraction which is not equal to $\frac{4}{5}$ is

(a) $\frac{40}{50}$ (b) $\frac{12}{15}$ (c) $\frac{16}{20}$ (d) $\frac{9}{15}$

Answer: (d) $\frac{9}{15}$

$$(a) \frac{40}{50} = \frac{40 \div 10}{50 \div 10} = \frac{4}{5}$$

$$(b) \frac{12}{15} = \frac{12 \div 3}{15 \div 3} = \frac{4}{5}$$

$$(c) \frac{16}{20} = \frac{16 \div 4}{20 \div 4} = \frac{4}{5}$$

$$(d) \frac{9}{15} = \frac{9 \div 3}{15 \div 3} = \frac{3}{5}$$

Q5. When $\frac{1}{4}$ is written with a denominator of 12, and its numerator is

(a) 3 (b) 8 (c) 24 (d) 12

Answer: (a) 3

$$\frac{1}{4} = \frac{1 \times 3}{4 \times 3} = \frac{1}{12}$$

Q6. Which of the following is not in the lowest form?

(a) $\frac{7}{5}$ (b) $\frac{15}{20}$ (c) $\frac{13}{33}$ (d) $\frac{27}{28}$

Answer: (b) $\frac{15}{20}$

(a) The common factor 7 and 5 = 1
 (b) The common factor 15 and 20 = 4
 (c) The common factor 13 and 33 = 1
 (d) The common factor 27 and 28 = 1

Q7. If $\frac{5}{8} = \frac{20}{p}$, then the value of p is

(a) 23 (b) 8 (c) 32 (d) 16

Answer: (c) 32

$$\frac{5}{8} = \frac{20}{p}$$

$$\Rightarrow 5 \times p = 20 \times 8$$

$$\Rightarrow p = \frac{20 \times 8}{5} = 4 \times 8 = 32$$

Q8. $\frac{11}{7}$ can be expressed in the form

(a) $7\frac{1}{4}$

(b) $4\frac{1}{7}$

(c) $1\frac{4}{7}$

(d) $11\frac{1}{7}$

Answer: (c) $1\frac{4}{7}$

 The mixed fraction of $\frac{11}{7} = 1\frac{4}{7}$
Q9. What is the value of $a+b/a-b$, If $a/b=4$?

(a) $3/5$

(b) $5/3$

(c) $4/5$

(d) $5/4$

Answer: (b) $5/3$

 It is given that $\frac{a}{b} = 4$

 We can write $a = 4b$

 By substituting the value of a in $\frac{a+b}{a-b}$

$$\frac{a+b}{a-b} = \frac{4b+b}{4b-b} = \frac{5b}{3b}$$

 Dividing the numerator and denominator by b , the value is $\frac{5}{3}$

Q10. The fraction to be added to $6\frac{7}{15}$ to get $8\frac{1}{5}$ is equal to

- (a) $11/15$
- (b) $1\frac{11}{15}$
- (c) $44/3$
- (d) $3/44$

Answer:

Consider x is the fraction to be added

$$6\frac{7}{15} + x = 8\frac{1}{5}$$

On further calculation

$$\Rightarrow \frac{97}{15} + x = \frac{41}{5}$$

$$\Rightarrow x = \frac{41}{5} - \frac{97}{15}$$

LCM of 5 and 15 is 15

$$x = \frac{123}{15} - \frac{97}{15} = \frac{26}{15} = 1 \frac{11}{15}$$

Q11. $\frac{3}{5}$ of 4 m 20 cm of a rope is equal to _____ cm.

- a) 452
- b) 352
- c) 420
- d) 252

Answer: d) 252

Hint 1 meter = 100 cm

Section B

Q9. What is wrong with the following?

$$\Rightarrow \frac{7}{4} + \frac{5}{2} = \frac{7+5}{4+2} = \frac{12}{6} = 2$$

Answer: Writing $\frac{7}{4} + \frac{5}{2} = \frac{7+5}{4+2}$ is wrong. It should be as follows.

Converting into like fractions

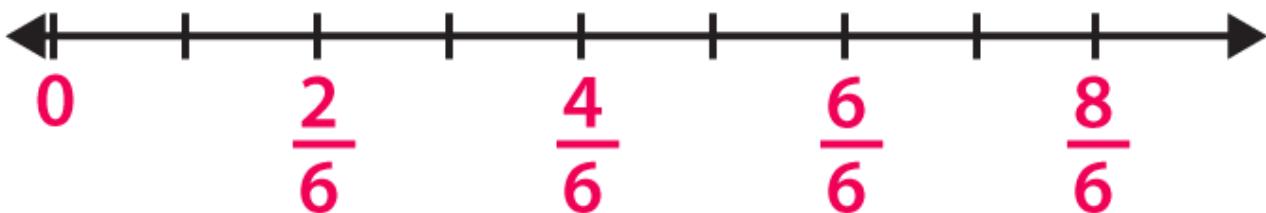
$$\Rightarrow \frac{7}{4} + \frac{5}{2} = \frac{7}{4} + \frac{10}{4}$$

Only numerators are added

$$\Rightarrow \frac{7+10}{4} = \frac{17}{4}$$

Q10. Mark $\frac{2}{6}$, $\frac{4}{6}$, $\frac{8}{6}$ and $\frac{6}{6}$ on the number line and put appropriate signs between fractions given

below:


(i) $\frac{5}{6} \dots \frac{2}{6}$

(ii) $\frac{3}{6} \dots \frac{0}{6}$

(iii) $\frac{1}{6} \dots \frac{6}{6}$

(iv) $\frac{8}{6} \dots \frac{5}{6}$

Answer:

(i) $\frac{5}{6} \dots \frac{2}{6}$

We know that

$\frac{5}{6} > \frac{2}{6}$ as $5 > 2$ and the denominator is the same.

(ii) $\frac{3}{6} \dots \frac{0}{6}$

We know that

$\frac{3}{6} > \frac{0}{6}$ as $3 > 0$ and the denominator is the same.

(iii) $\frac{1}{6} \dots \frac{6}{6}$

$\Rightarrow \frac{1}{6} < \frac{6}{6}$ as $6 > 0$ and the denominator is the same.

(iv) $\frac{8}{6} \dots \frac{5}{6}$

$\Rightarrow \frac{8}{6} > \frac{5}{6}$ as $8 > 5$ and the denominator is the same

Q11. Fill in the blanks using '>', '<', '=' :

(a) $\frac{11}{16} \quad \square \quad \frac{14}{15}$

(b) $\frac{8}{15} \quad \square \quad \frac{95}{14}$

(c) $\frac{12}{75} \quad \square \quad \frac{32}{200}$

(d) $\frac{18}{15} \quad \square \quad 1.3$

Answer:

(e) $\frac{11}{16} \quad < \quad \frac{14}{15}$

The L.C.M. of 16 and 15 is $2 \times 2 \times 2 \times 2 \times 3 \times 5 = 240$

Make it as like a fraction, multiply in numerator and denominator with the same digit

$$\frac{11}{16} \times \frac{15}{15} = \frac{165}{240}$$

$$\frac{14}{15} \times \frac{15}{15} = \frac{224}{240}$$

$$\Rightarrow \frac{224}{240} > \frac{165}{240} \text{ so, } \frac{11}{16} < \frac{14}{15}$$

$$(b) \frac{8}{15} < \frac{95}{14}$$

The L.C.M of 15 and 14 is $2 \times 3 \times 5 \times 7 = 210$

Make it as like a fraction, multiply in numerator and denominator with the same digit

$$\frac{8}{15} \times \frac{14}{14} = \frac{112}{210}$$

$$\frac{95}{14} \times \frac{15}{15} = \frac{1425}{210}$$

$$(f) \frac{12}{75} = \frac{32}{200}$$

The L.C.M of 75 and 200 is $2 \times 2 \times 2 \times 3 \times 5 \times 5 = 600$

Make it as like a fraction, multiply in numerator and denominator with the same digit

$$\Rightarrow \frac{12}{75} \times \frac{8}{8} = \frac{96}{600}$$

$$\Rightarrow \frac{32}{200} \times \frac{3}{3} = \frac{96}{600}$$

$$\Rightarrow \frac{96}{600} = \frac{96}{600}$$

Q12. Arrange the fractions $\frac{2}{3}, \frac{3}{4}, \frac{1}{2},$ and $\frac{5}{6}$, in ascending order.

Answer: Take the LCM of 3,4,2 and 6

$$\text{LCM} = 2 \times 2 \times 3 = 12$$

$$\Rightarrow \frac{2 \times 4}{3 \times 4} = \frac{8}{12}$$

$$\Rightarrow \frac{3 \times 3}{4 \times 3} = \frac{9}{12}$$

$$\Rightarrow \frac{1 \times 6}{2 \times 6} = \frac{6}{12}$$

$$\Rightarrow \frac{5 \times 2}{6 \times 2} = \frac{10}{12}$$

Now, arrange the following in ascending order

$$\Rightarrow \frac{6}{12} < \frac{8}{12} < \frac{9}{12} < \frac{10}{12}$$

The ascending order of the function is $\frac{1}{2} < \frac{2}{3} < \frac{3}{4} < \frac{5}{6}$

Q13. Write $\frac{5}{6}$ as a fraction with the numerator 60.

Answer: The given fraction is $\frac{5}{6}$

If multiply 5 by 12 it becomes 60

$$\Rightarrow \frac{5}{6} = \frac{5 \times 12}{6 \times 12} = \frac{60}{72}$$

$$\Rightarrow \frac{5}{6} \text{ is equivalent to } \frac{60}{72}$$

Q14. Find answers to the following. Write and indicate how you solved them.

(i) Is $5/9$ equal to $4/5$?

(ii) Is $9/16$ equal to $5/9$?

(iii) Is $4/5$ equal to $16/20$?

(iv) Is $1/15$ equal to $4/30$?

Answer:

(i) No. We know that $5 \times 5 \neq 9 \times 4$

(ii) No. We know that $9 \times 9 \neq 16 \times 5$

(iii) Yes. We know that $4 \times 20 = 16 \times 5$

(iv) No. We know that $1 \times 30 \neq 15 \times 4$

Section C

Q14. Subtract $8\frac{1}{3}$ from $\frac{100}{9}$

Answer: Given fractions are $8\frac{1}{3}$ and $\frac{100}{9}$

Now, rewrite the mixed fraction

$$8\frac{1}{3} = \frac{3 \times 8 + 1}{3} = \frac{24 + 1}{3} = \frac{25}{3}$$

Subtract the following fraction, $\frac{25}{3}$ from $\frac{100}{9}$

Cross-multiply both fractions with each other.

$$\Rightarrow \frac{100}{9} - \frac{25}{3}$$

$$\Rightarrow \frac{100}{9} - \frac{25 \times 3}{3 \times 3}$$

$$\Rightarrow \frac{100}{9} - \frac{75}{9}$$

$$\Rightarrow \frac{100 - 75}{9} = \frac{25}{9} = 2\frac{7}{9}$$

Q15. Katrina rode her bicycle $6\frac{1}{2}$ km in the morning and $8\frac{3}{4}$ km in the evening. Find the distance travelled by her altogether on that day.

Answer: The distance covered by Katrina in the morning

$$\Rightarrow 6\frac{1}{2} = \frac{2 \times 6 + 1}{2} = \frac{13}{2}$$

$$\Rightarrow 8\frac{3}{4} = \frac{4 \times 8 + 3}{4} = \frac{35}{4}$$

Total distance travelled by her

$$\Rightarrow \frac{13}{2} \text{ km} + \frac{35}{4} \text{ km} = \frac{13 \times 2}{2 \times 2} + \frac{35}{4}$$

LCM of 2 and 4 = 4

$$\Rightarrow \frac{26}{4} + \frac{35}{4} = \frac{(26+35)}{4} \text{ km} = \frac{61}{4} \text{ km} = 15\frac{1}{4} \text{ km}$$

Distance travelled altogether by Katrina in a day is $15\frac{1}{4}$ km.

Q16. On an average $\frac{1}{10}$ of the food eaten is turned into the organism's own body and is available for the next level of the consumer in a food chain. What fraction of the food eaten is not available for the next level?

Answer: Let that total food for eaten is 1 and out of these, $\frac{1}{10}$ of the food eaten is turned into the organism's own body.

Now, available for the next level of the consumer in a food chain is

$$\Rightarrow 1 - \frac{1}{10} = \frac{10-1}{10} = \frac{9}{10}$$

\Rightarrow The fraction of food eaten that is not available for the next level is $\frac{9}{10}$.

Q17. Mr. Rajan got a job at the age of 24 years and he got retired from the job at the age of 60 years. What fraction of his age till retirement was he in the job?

Answer:

Mr. Rajan got a job at the age of 24 years

He retired from the job at the age of 60 years

Total working year = $(60 - 24) = 36$ year

$$\text{The required fraction } \frac{36}{60} = \frac{36 \div 12}{60 \div 12} = \frac{3}{5}$$

The fraction of his age till retirement was he in the job is $\frac{3}{5}$

Section D

Q18. $8 - \left\{ 5\frac{1}{3} - \left(3 - 2\frac{1}{2} \right) \right\}$

Answer:

$$\Rightarrow 8 - \left\{ \frac{16}{3} - \left(3 - \frac{5}{2} \right) \right\}$$

$$\Rightarrow 8 - \left\{ \frac{16}{3} - 3 + \frac{5}{2} \right\}$$

$$\Rightarrow \frac{8}{1} - \frac{16}{3} + \frac{3}{1} - \frac{5}{2}$$

$$\Rightarrow \frac{48 - 32 + 18 - 5}{6} = \frac{66 - 47}{6} = \frac{19}{6} = 3\frac{1}{6}$$

Q19. Find the fraction equivalent to $45/60$, having:

- (i) numerator 15
- (ii) denominator 4
- (iii) denominator 240

(iv) numerator 135

Answer:

(i) numerator 15

$$\text{Given fraction} = \frac{45}{60}$$

By considering numerator = 15

We know that $45 \div 3 = 15$

Dividing the numerator and denominator of the fraction by 3

$$\Rightarrow \frac{45 \div 3}{60 \div 3} = \frac{15}{20}$$

(ii) denominator 4

$$\text{Given fraction} = \frac{45}{60}$$

By considering denominator = 4

We know that $60 \div 15 = 4$

Dividing the numerator and denominator of the fraction by 15

$$\Rightarrow \frac{45 \div 15}{60 \div 15} = \frac{3}{4}$$

(iii) denominator 240

$$\text{Given fraction} = \frac{45}{60}$$

By considering denominator = 240

We know that $60 \times 4 = 240$

Multiply the numerator and denominator of the fraction by 4

$$\Rightarrow \frac{45 \times 4}{60 \times 4} = \frac{180}{240}$$

(iv) numerator 135

By considering numerator = 135

We know that $45 \times 3 = 135$

Multiply the numerator and denominator of the fraction by 3

$$\Rightarrow \frac{45 \times 3}{60 \times 3} = \frac{135}{180}$$

Q20. Check whether the given fractions are equivalent:

(i) $\frac{5}{9}, \frac{30}{54}$

(ii) $\frac{2}{7}, \frac{16}{42}$

(iii) $\frac{4}{11}, \frac{32}{88}$

(iv) $\frac{3}{10}, \frac{12}{50}$

(v) $\frac{9}{27}, \frac{25}{75}$

Answer:

(i) $\frac{5}{9}, \frac{30}{54}$

$$\Rightarrow \frac{5}{9} \times \frac{6}{6} = \frac{30}{54} \quad [\text{Equivalent}]$$

(ii) $\frac{2}{7}, \frac{16}{42}$

$$\Rightarrow \frac{2}{7} \times \frac{8}{8} = \frac{16}{56} \quad [\text{Not Equivalent}]$$

(iii) $\frac{4}{11}, \frac{32}{88}$

$$\Rightarrow \frac{4}{11} \times \frac{8}{8} = \frac{32}{88} \quad [\text{Equivalent}]$$

$$(\text{iv}) \frac{3}{10}, \frac{12}{50}$$

$$\Rightarrow \frac{3}{10} \times \frac{4}{4} = \frac{12}{40} \quad [\text{Not Equivalent}]$$

$$(\text{v}) \frac{9}{27}, \frac{25}{75}$$

$$\Rightarrow \frac{9}{27} = \frac{1}{3}$$

$$\Rightarrow \frac{25}{75} = \frac{1}{3} \quad [\text{Equivalent}]$$

Q21. A girl did half of some work on Monday and one-third of it on Tuesday. How much will she have to do on Wednesday in order to complete the work?

Answer:

Let the total work done = 1

$$\text{Work done on Monday} = \frac{1}{2}$$

$$\text{Work done on Tuesday} = \frac{1}{3}$$

Work done on Wednesday = remaining work

$$\Rightarrow 1 - \left(\frac{1}{2} + \frac{1}{3} \right)$$

$$\Rightarrow 1 - \left(\frac{3+2}{2} \right) = 1 - \frac{5}{6}$$

$$\Rightarrow \frac{6-5}{6} = \frac{1}{6}$$

$$\text{Work done on Wednesday} = \frac{1}{6} \text{ of work.}$$

Q22. Ravish takes $2\frac{1}{5}$ minutes to walk across the school ground. Rahul takes $\frac{7}{4}$ minutes to do the same. Who takes less time and by what fraction?

Answer: Time taken by Ravish to walk across the school ground = $2\frac{1}{5}$ minutes = $\frac{11}{5}$ minutes

Time taken by Rahul to walk across the school ground = $\frac{7}{4}$ minutes

By comparing $\frac{11}{5}$ and $\frac{7}{4}$ minutes

We know that LCM of 4 and 5 is 20

In order to convert fractions into equivalent fractions having 20 as a denominator

$$\Rightarrow \frac{11 \times 4}{5 \times 4} = \frac{44}{20}$$

$$\Rightarrow \frac{7 \times 5}{4 \times 5} = \frac{35}{20}$$

So we get $\frac{44}{20} > \frac{35}{20}$

So Rahul takes less time

It can be written as

$$\frac{44}{20} - \frac{35}{20} = \frac{44-35}{20} = \frac{9}{20} \text{ minutes}$$

Hence, Rahul takes less time by $\frac{9}{20}$ minutes.