

Section A

1. The cube of a negative number is

- (a) negative
- (b) positive
- (c) negative or positive (d) None of these.

CBSE

Answer: (a) negative

Example:
$$-4 \times -4 \times -4 = (-4)^3 = -64$$

2. The cube root of $1\frac{27}{216}$ is

(a)
$$\frac{6}{7}$$

(b)
$$\frac{-7}{6}$$
 (c) $1\frac{1}{6}$

(c)
$$1\frac{1}{6}$$

(d)
$$\frac{-6}{7}$$

Answer:
$$1\frac{27}{216} = \sqrt[3]{\frac{343}{216}} = \sqrt[3]{\frac{343}{216}} = \sqrt{\frac{7 \times 7 \times 7}{2 \times 2 \times 2 \times 3 \times 3 \times 3}} = \frac{7}{2 \times 3} = \frac{7}{6} = 1\frac{1}{6}$$

7	343
7	49
7	7
	1

3. The smallest number by which 686 should be divided to make it a perfect cube is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Answer: Prime factorization of 686

2	686
7	343
7	49
7	7
	1

$$\therefore$$
 686 = 2 x 7 x 7 x 7

$$\rightarrow$$
 686 = 2 x 7^3

$$\Rightarrow \frac{686}{2} = 7^3$$

Therefore when 686 is divided by two, it will make it a perfect cube.

4. The volume of the cube is 729 m³. The length of its side is

- (a) 3 m
- (b) 6 m
- (c) 9 m
- (d) 27 m

Answer: Given that the volume of the cube = 729 m^3

- \rightarrow side x side x side = 729 m³
- \rightarrow (side)³ = 729 m³
- ⇒ side = $\sqrt[3]{729}$ m = $\sqrt[3]{9 \times 9 \times 9}$ m
- \rightarrow side = 9 m

Section B

5. 363×81 is a perfect cube. State whether the statement is true or false.

Answer: Using prime factorization

3	363
11	121
11	11
	1

3	81
3	27
3	9
3	3
	1

So,
$$363 = 11 \times 11 \times 3$$

$$81 = 3 \times 3 \times 3 \times 3$$

Now,
$$363 \times 81 = 11 \times 11 \times 3 \times 3 \times 3 \times 3 \times 3$$

We observe that $11 \times 11 \times 3$ occur without pairs.

Therefore, 363 × 81 is not a perfect cube.

6. The least number to be multiplied by 9 to make it a perfect cube is ______

Answer: $9 = 3^{2}$

To get a perfect cube, multiply 9 by 3

Now, $9 \times 3 = 27$

 $27 = 3^3$

Therefore, the required value is 3.

7. Write a Pythagorean triplet whose smallest number is 66.

Answer: Given, that the smallest number is 6.

We have to write a Pythagorean triplet.

For every natural number m > 1, 2m, $m^2 - 1$, and $m^2 + 1$ form a Pythagorean triplet.

Given, 2m = 6

m = 6/2

m = 3

So, $m^2 - 1 = (3)^2 - 1$

=9-1=8

So, $m^2 + 1 = (3)^2 + 1$

= 9 + 1 = 10

Therefore, the Pythagorean triplet is 6, 8, 10.

8. Evaluate the following: $\sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064}$

Answer: Let us simplify

$$\rightarrow$$
 $\sqrt[3]{(3)^3} + \sqrt[3]{(0.2)^3} + \sqrt[3]{(0.4)^3}$

$$\rightarrow$$
 3 + 0.2 + 0.4 = 3.6

Section C

9. Multiply 6561 by the smallest number so that the product is a perfect cube. Also, find the cube root of the product.

Answer: By factorizing 6561 we get

3	6561
3	2187
3	729
3	243
3	81
3	27
3	9
3	3
	1

$$6561 = (3 \times 3 \times 3) \times (3 \times 3 \times 3) \times 3 \times 3$$

To complete the triplet we should multiply by 3

The required number smallest number = 3

Cube root of product = $3 \times 3 \times 3 = 27$

10. Three numbers are in the ratio 3: 4: 5. If their product is 480, find the numbers.

Answer: Three numbers are in the ratio 3: 4: 5

Product = 480

Let the numbers be 3x, 4x and 5x

$$3x \times 4x \times 5x = 480$$

$$60x^3 = 480$$

$$x^3 = \frac{480}{60} = 8$$

$$x^3 = 8$$

$$x = \sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2}$$

$$x = 2$$

First number = $3x = 3 \times 2 = 6$

Second number = $4x = 4 \times 2 = 8$

Third Number = $5x = 5 \times 2 = 10$

- 3. The difference of two perfect cubes is 189. If the cube root of the smaller of the two numbers is
- 3, find the cube root of the larger number.

Answer: Given, the cube root of a smaller number = 3

On cubing both sides,

Cube of smaller number = $(3)^3 = 27$

Let the cube root of the larger number be y.

According to the question,

Cube of larger number – a cube of smaller number = 189

$$y^3 - 27 = 189$$

$$y^3 = 189 + 27$$

$$y^3 = 216$$

Taking cube root,

$$y = \sqrt[3]{216}$$

$$y = \sqrt[3]{6 \times 6 \times 6}$$

$$y = 6$$

Therefore, the cube root of the larger number is 6.

Section D

1. Evaluate the following:

(i)
$${(5^2 + 12^2)^{1/2}}^3$$

(ii)
$${(6^2 + 8^2)^{1/2}}^3$$

Answer:

(i)
$$\{(5^2 + 12^2)^{1/2}\}^3$$

Given, the expression is $\{5^2 + (12^2)^{\frac{1}{2}}\}^3$

We have to evaluate the expression.

$$5^2 = 5 \times 5 = 25$$

$$(12^2)^{1/2} = 12$$

$$5^2 + (12^2)^{\frac{1}{2}} = 25 + 12 = 37$$

$${5^2 + (12^2)^{\frac{1}{2}}}^3 = (37)^3$$

$$= 37 \times 37 \times 37 = 50653$$

Therefore, the required value is 50653.

(ii)
$${(6^2 + 8^2)^{1/2}}^3$$

Given, the expression is $\{6^2 + (8^2)^{1/2}\}^3$

We have to evaluate the expression.

$$6^2 = 6 \times 6 = 36$$

$$(8^2)^{1/2} = 8$$

$$6^2 + (8^2)^{1/2} = 36 + 8 = 44$$

$${6^2 + (8^2)^{1/2}}^3 = (44)^3$$

$$= 44 \times 44 \times 44 = 85184$$

Therefore, the required value is 85184.

2. In a Maths lab there are some cubes and cuboids of the following measurements:

- (i) One cube of side 4 cm
- (ii) one cube of side 6 cm
- (iii) 3 cuboids each of dimensions 4 cm \times 4 cm \times 6 cm and 3 cuboids each of the dimensions 4 cm \times 6 cm \times 6 cm.

A student wants to arrange these cubes and cuboids in the form of a big cube. Is it possible for him/her to arrange them in the form of a big cube? If yes, then find the length of a side of the new cube so formed.

Answer:

- (i) One cube of side = 4 cm
- : Volume = $(4)^3$ = 64 cm³
- (ii) One cube of side = 6 cm
- : Volume = $(6)^3$ = 216 cm³
- (iii) 3 cuboids of the size $4 \text{ cm } x \text{ } 4 \text{ cm } x \text{ } 6 \text{ cm } x \text{ } 3 = 288 \text{ cm}^3$

and 3 cuboids of the size $4 \times 6 \times 6 \times 3 = 432 \text{ cm}^3$

Total volume = $64 + 216 + 288 + 432 = 1000 \text{ cm}^3$

$$\therefore$$
 side = $\sqrt[3]{1000}$ = $\sqrt[3]{10 \times 10 \times 10}$ = 10 cm

Yes, it is possible, and the length of the side of a new cube is 10 cm.